Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery

نویسندگان

  • Yingfeng Tu
  • Fei Peng
  • Alain A M André
  • Yongjun Men
  • Mangala Srinivas
  • Daniela A Wilson
چکیده

We report the self-assembly of a biodegradable platinum nanoparticle-loaded stomatocyte nanomotor containing both PEG-b-PCL and PEG-b-PS as a potential candidate for anticancer drug delivery. Well-defined stomatocyte structures could be formed even after incorporation of 50% PEG-b-PCL polymer. Demixing of the two polymers was expected at high percentage of semicrystalline poly(ε-caprolactone) (PCL), resulting in PCL domain formation onto the membrane due to different properties of two polymers. The biodegradable motor system was further shown to move directionally with speeds up to 39 μm/s by converting chemical fuel, hydrogen peroxide, into mechanical motion as well as rapidly delivering the drug to the targeted cancer cell. Uptake by cancer cells and fast doxorubicin drug release was demonstrated during the degradation of the motor system. Such biodegradable nanomotors provide a convenient and efficient platform for the delivery and controlled release of therapeutic drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox‐Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione

The development of artificial nanomotor systems that are stimuli-responsive is still posing many challenges. Herein, we demonstrate the self-assembly of a redox-responsive stomatocyte nanomotor system, which can be used for triggered drug release under biological reducing conditions. The redox sensitivity was introduced by incorporating a disulfide bridge between the hydrophilic poly(ethylene g...

متن کامل

Self-Guided Supramolecular Cargo-Loaded Nanomotors with Chemotactic Behavior towards Cells

Delivery vehicles that are able to actively seek and precisely locate targeted tissues using concentration gradients of signaling molecules have hardly been explored. The directed movement toward specific cell types of cargo-loaded polymeric nanomotors along a hydrogen peroxide concentration gradient (chemotaxis) is reported. Through self-assembly, bowl-shaped poly(ethylene glycol)-b-polystyren...

متن کامل

Motion Manipulation of Micro- and Nanomotors.

Inspired by the self-migration of microorganisms in nature, artificial micro- and nanomotors can mimic this fantastic behavior by converting chemical fuel or external energy into mechanical motion. These self-propelled micro- and nanomotors, designed either by top-down or bottom-up approaches, are able to achieve different applications, such as environmental remediation, sensing, cargo/sperm tr...

متن کامل

Poly (Lactic Acid)Nanofibres as Drug Delivery Systems: Opportunities and Challenges

Numerous Scientists have discovered the procedure of nanotechnology, explicitlynanofibers, asdrug delivery systems for transdermal uses. Nanofibers canbe used to deliver drugs and are capable of controlled release for a continued periodof time. Poly (Lactic Acid) (PLA) is the lastly interesting employed synthetic polymer in biomedical application owing to its well categorized biodegradable prop...

متن کامل

Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor.

Self-powered artificial nanomotors are currently attracting increased interest as mimics of biological motors but also as potential components of nanomachinery, robotics, and sensing devices. We have recently described the controlled shape transformation of polymersomes into bowl-shaped stomatocytes and the assembly of platinum-driven nanomotors. However, the platinum encapsulation inside the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017